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What (and Why) is a Weyl Alternation Set?
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Lie Algebras

A Lie algebra g is a vector space over C equipped with an operation called a Lie bracket.

sln
The Lie algebra sln consists of (n + 1)× (n + 1) matrices over C with trace zero and Lie
bracket

[X ,Y ] = XY − YX .
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Roots

A simple Lie algebra g has an associated irreducible root system Φ, which we’ll think of
as vectors in Euclidean space.

sl2

α1

α2 α1 + α2

• Simple roots ∆ = {α1, α2, . . . , αr}
• Positive Roots Φ+

• Negative Roots Φ− = −Φ+
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Weyl Group

For a root system with simple roots ∆ = {α1, . . . , αr}, the corresponding Weyl group W
is generated by reflections s1, . . . , sr where si is the reflection through the hyperplane
orthogonal to αi .

sl2

α1

α2 α1 + α2

s1(α2) = α1 + α2
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Weights

• A representation V of g is a map g → gl(V ) respecting the Lie bracket.

• A weight space is a generalized eigenspace. Formally, if h ⊆ g is a Cartan
subalgebra, then a weight λ is a linear functional λ : h → C, and the corresponding
weight space is

Vλ = {v ∈ V |∀H ∈ h,Hv = λ(H)v}.

• A simple g-representation is determined by its highest weight. For V the
representation with highest weight λ, we we write

m(λ, µ) = dim(Vµ)

for the multiplicity of µ in V .
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Weights

We can think of weights as living in Euclidean space along with roots (roots are weights
of the adjoint representation).

• Write (λ, α) for the inner product in this Euclidean space

• The Weyl group acts as si (λ) = λ− 2 (λ,αi )
(αi ,αi )

αi

Property Definition
λ dominant (λ, α) ≥ 0 for all α ∈ Φ+

λ integral 2 (λ,α)
(α,α) ∈ Z for all α ∈ Φ

λ ≤ µ µ− λ can be written as a positive linear combination of positive roots

We say that µ is higher than λ whenever λ < µ.
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Kostant’s Weight Multiplicity Formula

Theorem (Kostant 1958)

The multiplicity of the weight µ in the representation V of g with highest weight λ is

m(λ, µ) =
∑
σ∈W

(−1)ℓ(σ)℘(σ(λ+ ρ)− µ− ρ)

where

• ℓ(σ) is the minimum number of reflections needed to write σ,

• ℘(ξ), the Kostant partition function, is the number of ways to write ξ as a
non-negative integer linear combination of positive roots Φ+, and

• ρ = 1
2

∑
α∈Φ+ α.
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Kostant’s Weight Multiplicity Formula

Theorem (Kostant 1958)

The multiplicity of the weight µ in the representation V of g with highest weight λ is

m(λ, µ) =
∑
σ∈W

(−1)ℓ(σ)℘(σ(λ+ ρ)− µ− ρ).
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Weyl Alternation Set

For some elements σ ∈ W , we have that ℘(σ(λ+ ρ)− µ− ρ) = 0, so they don’t
contribute to the sum. The Weyl alternation set is the set of elements that do
contribute:

A(λ, µ) = {σ ∈ W : ℘(σ(λ+ ρ)− µ− ρ) > 0}

Note that σ ∈ A(λ, µ) if and only if σ(λ+ ρ)− µ− ρ is a linear combination of positive
roots with nonnegative (not all zero) coefficients.

We can take the sum in our formula over only elements of A(λ, µ) instead of the full
Weyl group.
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Poset Structure
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Weak Order

A reduced expression of an element σ ∈ W is a minimum length expression for σ as a
product of simple transpositions si .

The left weak order (W ,≤L) is defined
by σ ≤L τ if a reduced expression for σ
is a suffix of a reduced expression for τ .

Example

s1s3 ≤L s1s2s1s3

The right weak order (W ,≤R) is defined
by σ ≤R τ if a reduced expression for σ
is a prefix of a reduced expression for τ .

Example

s1s2 ≤R s1s2s1s3
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Poset Structure of A(λ, µ)

Theorem

Let λ be an integral dominant weight of a simple Lie algebra g with Weyl group W . Then
for any weight µ, the Weyl alternation set A(λ, µ) is a (possibly empty) order ideal in the
left and right weak orders of W .

Corollary

If σ ∈ A(λ, µ), then any contiguous subword of a reduced expression for σ is also in
A(λ, µ).
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Poset Structure of A(λ, µ)

s1s2s3s1s2s1

s2s3s2s1s2 s1s2s3s2s1 s1s2s3s1s2

s2s3s2s1 s3s1s2s1 s2s3s1s2 s1s2s3s2 s1s2s1s3

s2s3s2 s3s2s1 s1s3s2 s2s3s1 s1s2s1 s1s2s3

s3s2 s2s3 s1s3 s2s1 s1s2

s3 s2 s1

1

The left weak order on the
type A3 Weyl group with
the set

A(α̃,−α̃)

highlighted where

α̃ = α1 + α2 + α3.

18 / 37



Forbidden Words

Corollary

If σ ∈ A(λ, µ), then any contiguous subword of a reduced expression for σ is also in
A(λ, µ).

Contrapositive

If σ /∈ A(λ, µ), then any word containing a reduced expression of σ as a contiguous
subword is also not in A(λ, µ).
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Independence System Structure
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Prior Work

Notation: α̃ is the highest root. In type Ar , it’s just α̃ = α1 + α2 + · · ·+ αr .

Theorem (Harris 2011)

In type Ar , the Weyl alternation set A(α̃, 0) consists of commuting products of simple
transpositions si for 1 < i < r .

Theorem (Harry 2024)

In type Ar , the Weyl alternation set A(α̃, µ) for µ = αk + αk+1 + · · ·+ αℓ a positive root
consists of commuting products of simple transpositions si for 1 < i < k or ℓ < i < r .

These theorems describe the alternation set like an independence system (where a set
of simple transpositions is independent if they commute pairwise).
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Independence Systems

Independence System (a.k.a Abstract Simplicial Complex)

An independence system is a pair (V , I) consisting of a finite set V and a collection of
subsets of I called independent sets satisfying

1. ∅ ∈ I
2. If Y ∈ I and X ⊆ Y , then X ∈ I.

To extend the results of Harris and Harry, we need to generalize their notion of
independence (commuting).
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Influence

Influence

For an element σ ∈ W of the Weyl group, define the influence and extended influence
of σ, denoted I (σ) and I (σ) respectively, as follows:

I (σ) = {i : si is in a reduced word for σ}
I (σ) = {i : i ∈ I (σ) or i is adjacent to some j ∈ I (σ)}

(“adjacent” meaning “adjacent in the Dynkin diagram”)

1 2 3 4 5 6 7
I (s4s6s7s6)

1 2 3 4 5 6 7

I (s4s6s7s6)
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Independence

Call a subset X ⊆ W independent if for each σ, τ ∈ X with σ ̸= τ , we have that

I (σ) ∩ I (τ) = ∅.

1 2 3 4 5 6 7
I (s4s6s7s6)

1 2 3 4 5 6 7
I (s1s2)
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Basic Allowable Subwords

Theorem

Let λ be a dominant integral weight of a simple Lie algebra g and µ a weight such that
A(λ, µ) is nonempty.

1. There exists a unique subset S ⊆ A(λ, µ) with 1 /∈ S such that each b ∈ S has
connected influence and any element σ ∈ A(λ, µ) can be written as a product of an
independent subset of S .

2. Furthermore, there is a bijection between elements of A(λ, µ) and independent
subsets of S where each independent subset corresponds to its product.

Call this unique subset BAS(λ, µ), the basic allowable subwords.
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Summary

Given weights λ (dominant, integral) and µ, A(λ, µ) has the structure of an
independence system (BAS(λ, µ), I). We can rephrase the theorems of Harris and Harry
in this language.

Theorem (Harris 2011)

In type Ar ,
BAS(α̃, 0) = {si : 1 < i < r}.

Theorem (Harry 2024)

In type Ar ,
BAS(α̃, αk + · · ·+ αℓ) = {si : 1 < i < k or ℓ < i < r}.
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Examples: A(α̃, µ) in Type A
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The Case of µ = −α̃

Theorem

The set BAS(α̃,−α̃) of basic allowable subwords of A(α̃,−α̃) in type Ar consists of

(a) sk with 1 ≤ k ≤ r ,

(b) sk+1sk with 2 ≤ k ≤ r − 2,

(c) sksk+1 with 2 ≤ k ≤ r − 2,

(d) sksk+1sk with 2 ≤ k ≤ r − 2, and

(e) sk+2sksk+1 with 2 ≤ k ≤ r − 3.

If we wanted to build an element of A(α̃,−α̃) in type A9, we could take:

s2s3 s5s6s5


s7s6
s4
s8s9
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A Useful Lemma

Lemma

Let S ⊆ A(λ, µ) contain all simple transpositions in A(λ, µ) but not the identity.
Suppose that for any σ, τ ∈ S non-independent elements the product στ falls into one of
the following 3 cases:

1. στ ∈ S ,

2. στ = ν1ν2 · · · νm where {ν1, ν2, . . . , νm} is a (possibly empty) independent subset of
S and ℓ(ν1) + · · ·+ ℓ(νm) < ℓ(σ) + ℓ(τ), or

3. στ contains a forbidden subword (i.e. a contiguous substring not in A(λ, µ)).

Then BAS(λ, µ) = S .
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Proof Method

We establish a set of words not
contained in A(α̃,−α̃).

Forbidden Words

The following strings cannot appear in
any σ in A(α̃,−α̃).

1. s2s1, s1s2, sr−1sr , sr sr−1

2. si−1si si+1, si si−1si+1, si+1si si−1

3. The product of four consecutive si
in any order

For any pair of non-independent elements
of S , we check that its product falls into a
case in the previous lemma.

Examples

• (sk+1sk)(sksk+1sk) = sk ∈ S

• (sk+1sk)(sksk−1) = sk+1sk−1 is an
independent product of elements in S

• (sk+1sk)(sk+1sk+2) contains
sksk+1sk+2 /∈ A(α̃,−α̃)
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Moving Between Roots

Theorem

Let λ be an integral dominant weight, and let µ and ν be two other integral weights such
that ν ≤ µ. Then, BAS(λ, µ) = BAS(λ, ν) ∩ A(λ, µ).

Idea: If we know the basic allowable subwords for a root ν, we can quickly compute the
basic allowable subwords for a higher root µ.
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The Case of A(α̃, µ) for µ any root in Type Ar

We use the notation αi ,j =
∑j

k=i αk . Each table entry is a range of possible values for k .

µ sk sk+1sk sksk+1 sksk+1sk sksk+2sk+1

−α̃ [1, r ] [2, r − 2] [2, r − 2] [2, r − 2] [2, r − 3]

−α1,j [1, r − 1] [2, j − 1] [2, j∗] [2, j − 1] [2, j − 2]

−αi ,r [2, r ] [i∗ − 1, r − 2] [i , r − 2] [i , r − 2] [i , r − 3]

−αi ,j [2, r − 1] [i∗ − 1, j − 1] [i , j∗] [i , j − 1] [i , j − 2]

0 [2, r − 1] ∅ ∅ ∅ ∅
αi ,j [2, i − 1] ∪ [j + 1, r − 1] ∅ ∅ ∅ ∅

Here i > 1, j < r , i∗ = max(i , 3), and j∗ = min(j , r − 2).
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Enumeration and Recurrences in Type A
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Fibonacci-Like Recurrences

We write Ar (λ, µ) for the Weyl alternation set in type Ar .

Theorem

Let 1 ≤ i ≤ j ≤ r − 2 and µ = −αi ,j . Then

|Ar (α̃, µ)| = |Ar−1(α̃, µ)|+ |Ar−2(α̃, µ)|.

Idea: The first summand comprises elements of Ar (α̃, µ) that do not include a sr−1. The
second summand comprises elements that do.

Theorem

Let hir = |Ar (α̃,−αi ,r )|. If r ≥ i + 4, then

hir = hir−1 + hir−2 + 3hir−3 + hir−4.

If i , r ≥ 3, then
hir = hi−1

r−1 + hi−2
r−2.

35 / 37



Fibonacci-Like Recurrences

We write Ar (λ, µ) for the Weyl alternation set in type Ar .

Theorem

Let 1 ≤ i ≤ j ≤ r − 2 and µ = −αi ,j . Then

|Ar (α̃, µ)| = |Ar−1(α̃, µ)|+ |Ar−2(α̃, µ)|.

Idea: The first summand comprises elements of Ar (α̃, µ) that do not include a sr−1. The
second summand comprises elements that do.

Theorem

Let hir = |Ar (α̃,−αi ,r )|. If r ≥ i + 4, then

hir = hir−1 + hir−2 + 3hir−3 + hir−4.

If i , r ≥ 3, then
hir = hi−1

r−1 + hi−2
r−2.

35 / 37



Generating Function for Negative Roots

Theorem

Let ar ,i ,j = |Ar (α̃,−αi ,j)|. Then∑
1≤i≤j≤r

ai ,r ,jx
r s i t j =

1

t(1− x − x2)

(
(1− x)tH(xt, s) + P(xt, s)− xst

1− xst − (xst)2

)

where

H(x , s) =
xs(x5s + 3x4s − xs + x2 + 2x + 1)

(1− x − x2 − 3x3 − x4)(1− xs − (xs)2)

and

P(x , s) =
xs(x4s + 3x3s + x + 1)

(1− x − x2 − 3x3 − x4)(1− xs − (xs)2)
.
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T h a n k

Y o u
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